ORGALLOY® VIF FILMS : REDUCING PREPLANT FUMIGANT DOSAGES WITH PRESERVED EFFICIENCY Ken WATANABE (Ryosho, Japan), Thomas GRIMAUD*, Jun YAMAMOTO, Ben SIMKIN (Elf Atochem), Dr TANAKA (Kitasato University, Kawanaga, Japan), Jérôme FRITSCH (Plant Protection Service of France) **Orgalloy**[®] is an engineering polyamide alloy resin which presents unique barrier properties to Methyl Bromide (MB) and a wide variety of chemicals (MITC, Chloropicrin, 1,3 Dichloropropene). Orgalloy[®] is processed onto conventionnal polyethylene film equipment thus allows traditional agricultural film manufacturers to supply their customers with Virtually Impermeable Films (VIF) without specific investment. Orgalloy[®] Virtually Impermeable Films are now used extensively in Europe and Japan for soil fumigation with reduced dosages of Methyl Bromide (MB) down to 50% and preserved crop yields. Orgalloy[®] VIF films are also currently evaluated on-field with MB by official institutes in the US and Australia. On-field testing of Orgalloy[®] VIF films with alternatives to MB is being performed in Europe and Japan. Orgalloy[®] VIF films are 3 layers structures : PE / Orgalloy[®] / PE, where Orgalloy[®] thickness is generally around 10μ . Orgalloy[®] technology and Orgalloy[®] VIF films for soil disinfestation are patented by Elf Atochem¹. ## A- Orgalloy® VIF Films: - MB dosages reduction with improved CT ratios | Material | Film Thickness
(µm) | Permeability to MB
(g/m².h) (a) | CT Measurements ²
(g.h.m ⁻³) (b) | |-------------------------------------|------------------------|------------------------------------|--| | LDPE | 70 | 60 * | 4170 (70g/m ² MB) | | PE/Orgalloy [®] /PE
VIF | 32
(10 / 12 / 10µ) | 0.07 * | 5410 (35g/m ² MB) | #### Table 1: ## (a)- According to french Standard NFT 54-195. Permeability of Polyethylene (PE) and Orgalloy to MB at 20°C. Evaluated by L.N.P.V. (Laboratoire National de Protection des Végétaux) - Cenon - France. (b)- Product Concentration x Time (CT in g.h/m 3 of Methyl Bromide) obtained at 15 cm deep during 147h of treatement with the hot Methyl Bromide technique. Comparison between PE and Orgalloy barrier films with dosages of 70 g/m 2 and 35 g/m 2 of Methyl Bromide. Evaluated by L.N.P.V - June 1997 - CIREF Douville France. ## - Mellon production with reduced dosage of MB and preserved yields | Material | Area | % damaged fruits | Av. mellon
Weight
(g) | Ratio of
Marketable fruits (%) | |--|------------------|------------------|-----------------------------|-----------------------------------| | Untreated field | 12m ² | 100 | - | - | | LDPE – MB 30kg/10a | 24m ² | 8 | 1330 | 98 | | PE / Orgalloy [®] / PE
VIF MB 20kg/10a | 24m ² | 5 | 1420 | 99 | #### Table 2: RYOSHO evaluation of mellon production at Miyazaki Prefectural Agricultural Center (Japan). Fumigation in August 98, Planting Sept. 10th / Evaluation Nov. 30th, 98 (Repeated 2 times). LDPE film : 75μ - PE / Orgalloy[®] / PE film : 40μ Damage: infections, visual checking. ## B- Orgalloy® VIF Films: Barrier to chemical alternatives (Chloropicrin, MITC, 1,3 D) | Material | Film Thickness
(µm) | MeBr
Perm. (a) | Chloropicrin
Perm. (b) | MITC
Perm. (b) | 1,3 Dichloropropene
Perm. (b) | |-------------------------------------|------------------------|-------------------|---------------------------|-------------------|----------------------------------| | LDPE | 70 | 60 | 116 | 198 | 168 | | PE/ORGALLOY [®] /PE
VIF | 32
(10 / 12 / 10μ) | 0.07 | 0.138 | 1.4 | 0.15 | ## Table 3: - (a)- According to NFT 54-195 and performed by LNPV. - (b)- Permeability of polyethylene and 3 layers Orgalloy VIF films to MITC, Chloropicrin and 1,3 Dichloropropene evaluated by Dr TANAKA Kitasato University Kanagawa Japan. # - Herbicide Effect: Soil treatment with MITC, with and without Orgalloy® VIF film | Film | Film Thickness | MITC/Water | HERBICIDE EFFECT | | | |-------------------------------------|----------------|------------|------------------|---------|---------| | | (µm) | Dosage | 4 days | 13 days | 39 days | | LDPE | 40 | 800L/10a | 10 | 9 | 5 | | LDPE | 40 | 120L/10a | 10 | 9 | 4 | | PE/ORGALLOY [®] /PE
VIF | 40 | 800L/10a | 10 | 9 | 8 | | PE/ORGALLOY [®] /PE
VIF | 40 | 120L/10a | 10 | 9 | 8 | ### Table 4: Evaluation conducted by RYOSHO and Japan Association for Advancement of Phytoregulators, on 7 days (from May 28th, 99). Dosage: 40L Sodium Methyl dithio Carbamate + Water (800L = 40L + 760L Water, 120L = 40L + 120L) Herbicide Effect: Herb density evaluated on a 0 to 10 (no visible herbs) scale on: - Digitaria adscendens=crabgrass - Echinochloa curs-galli=barnyardegrass - Cyperus microiria Steud=chufa - Chenopodium album=common lambsquarters - Portulaca oleracea=common purslane - Persicaria longiseta=posumbu knotweed # **Conclusion**: Orgalloy[®] VIF films key points: - Barrier to MB and chemical alternatives - Fumigant dosage reduction with higher CT ratios - Preserved yields demonstrated for 50% reduction of MB dosage - Prevents from permeation and slow release of chemical in the near-by area during the fumigation period (possible reduction of buffer-zones) - Cost reduction associated to fumigant dosage reduction can compensate VIF film cost - Orgalloy® processable onto conventional PE equipment ## **References:** - 1 D.Basset, M.P. Bellinger, B.Echalier, EP N°95 11 698 - 2 D.Roumilhac, B.Simkin, J.Fritsch, "Barrier film with Orgalloy", MBAO Conf. 98